Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542374

RESUMO

In this short review, we presented and discussed studies on the expression of globin genes in ß-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of ß-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of ß-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by ß-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with ß-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.


Assuntos
Hemoglobinopatias , Talassemia beta , Humanos , Talassemia beta/genética , alfa-Globinas/genética , alfa-Globinas/metabolismo , Hemoglobinopatias/genética , Fenótipo , Expressão Gênica , Proteínas Sanguíneas/genética , Chaperonas Moleculares/genética
2.
J Med Chem ; 67(5): 3542-3570, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38381650

RESUMO

GPR84 is a putative medium-chain fatty acid receptor that is implicated in regulation of inflammation and fibrogenesis. Studies have indicated that GPR84 agonists may have therapeutic potential in diseases such as Alzheimer's disease, atherosclerosis, and cancer, but there is a lack of quality tool compounds to explore this potential. The fatty acid analogue LY237 (4a) is the most potent GPR84 agonist disclosed to date but has unfavorable physicochemical properties. We here present a SAR study of 4a. Several highly potent agonists were identified with EC50 down to 28 pM, and with SAR generally in excellent agreement with structure-based modeling. Proper incorporation of rings and polar groups resulted in the identification of TUG-2099 (4s) and TUG-2208 (42a), both highly potent GPR84 agonists with lowered lipophilicity and good to excellent solubility, in vitro permeability, and microsomal stability, which will be valuable tools for exploring the pharmacology and therapeutic prospects of GPR84.


Assuntos
Inflamação , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Inflamação/metabolismo , Ácidos Graxos/metabolismo , Relação Estrutura-Atividade
3.
Sci Rep ; 14(1): 4158, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378867

RESUMO

Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Humanos , Bovinos , Animais , Trypanosoma brucei brucei/genética , Trypanosoma congolense/genética , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Trypanosoma/genética , DNA , Fezes
5.
HLA ; 101(5): 458-483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680506

RESUMO

The classical MHC class I and class II molecules play key roles in determining the antigenic-specificity of CD8+ and CD4+ T-cell responses-as such characterisation of the repertoire of MHCI and MHCII allelic diversity is fundamental to our ability to understand, and potentially, exploit how genetic diversity influences the outcome of immune responses. Cattle remain one of the most economically livestock species, with particular importance to many small-holder farmers in low-and-middle income countries (LMICs). However, our knowledge of MHC (BoLA) diversity in the indigenous breeds that form the mainstay of cattle populations in many LMICs remains very limited. In this study we develop a MiSeq-based platform to enable the rapid analysis of BoLA-DQA and BoLA-DQB, and combine this with similar platforms to analyse BoLA-I and BoLA-DRB repertoires, to study a large cohort of cattle (~800 animals) representing the 3 major indigenous breeds (Angoni, Barotse, Tonga) in Zambia. The data presented confirms the capacity of this high-throughput and high-resolution approach to provide a full characterisation of the MHCI-MHCII genotypes of cattle for which little previous MHC sequence data has been obtained. The cattle in Zambia were found to express a diverse range of MHCI, MHCII and extended MHCI-MHCII haplotypes. The combined MHCI-MHCII genotyping now possible opens new opportunities to rapidly expand our knowledge of MHC diversity in cattle that could find applications in a related translational disciplines such as vaccine development.


Assuntos
Genes MHC Classe I , Bovinos , Animais , Zâmbia , Alelos , Genótipo , Haplótipos
6.
Vaccines (Basel) ; 10(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423003

RESUMO

The apicomplexan parasite Theileria parva is the causative agent of East Coast fever, usually a fatal disease for cattle, which is prevalent in large areas of eastern, central, and southern Africa. Protective immunity against T. parva is mediated by CD8+ T cells, with CD4+ T-cells thought to be important in facilitating the full maturation and development of the CD8+ T-cell response. T. parva has a large proteome, with >4000 protein-coding genes, making T-cell antigen identification using conventional screening approaches laborious and expensive. To date, only a limited number of T-cell antigens have been described. Novel approaches for identifying candidate antigens for T. parva are required to replace and/or complement those currently employed. In this study, we report on the use of immunopeptidomics to study the repertoire of T. parva peptides presented by both BoLA-I and BoLA-DR molecules on infected cells. The study reports on peptides identified from the analysis of 13 BoLA-I and 6 BoLA-DR datasets covering a range of different BoLA genotypes. This represents the most comprehensive immunopeptidomic dataset available for any eukaryotic pathogen to date. Examination of the immunopeptidome data suggested the presence of a large number of coprecipitated and non-MHC-binding peptides. As part of the work, a pipeline to curate the datasets to remove these peptides was developed and used to generate a final list of 74 BoLA-I and 15 BoLA-DR-presented peptides. Together, the data demonstrated the utility of immunopeptidomics as a method to identify novel T-cell antigens for T. parva and the importance of careful curation and the application of high-quality immunoinformatics to parse the data generated.

7.
Int J Lab Hematol ; 44 Suppl 1: 21-27, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35443077

RESUMO

Hemoglobinopathies constitute some of the most common inherited disorders worldwide. Manifestations are very severe, patient management is difficult and treatment is not easily accessible. Preimplantation genetic testing for monogenic disorders (PGT-M) is a valuable reproductive option for hemoglobinopathy carrier-couples as it precludes the initiation of an affected pregnancy. PGT-M is performed on embryos generated by assisted reproductive technologies and only those found to be free of the monogenic disorder are transferred to the uterus. PGT-M has been applied for 30 years now and ß-thalassemia is one of the most common indications. PGT may also be applied for human leukocyte antigen typing to identify embryos that are unaffected and also compatible with an affected sibling in need of hemopoietic stem cell transplantation. PGT-M protocols have evolved from PCR amplification-based, where a small number of loci were analysed, to whole genome amplification-based, the latter increasing diagnostic accuracy, enabling the development of more generic strategies and facilitating multiple diagnoses in one embryo. Currently, numerous PGT-M cycles are performed for the simultaneous diagnosis of hemoglobinopathies and screening for chromosomal abnormalities in the embryo in an attempt to further improve success rates and increase deliveries of unaffected babies.


Assuntos
Hemoglobinopatias , Diagnóstico Pré-Implantação , Talassemia beta , Transferência Embrionária/métodos , Feminino , Testes Genéticos/métodos , Hemoglobinopatias/diagnóstico , Hemoglobinopatias/genética , Humanos , Gravidez , Diagnóstico Pré-Implantação/métodos , Talassemia beta/genética
8.
Biology (Basel) ; 11(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336809

RESUMO

The Corfu δ0ß+ thalassemic allele is a unique thalassemic allele consisting of the simultaneous presence in cis of a deletion of the δ-globin (Hemoglobin Subunit Delta, HBD) and a single nucleotide variant in the ß-globin gene (Hemoglobin Subunit Beta, HBB). The allele has, so far, been described in individuals of Greek origin. The objectives of the study are to ascertain the prevalence of the Corfu δ0ß+ allele in comparison to other ß-thalassemia variants encountered in Greece using our in-house data repository of 2558 ß-thalassemia heterozygotes, and to evaluate the hematological phenotype of Corfu δ0ß+ heterozygotes in comparison to heterozygotes with the most common ß+- and deletion α0- thalassemia variants in Greece. The results of the study showed a relative incidence of heterozygotes with Corfu δ0ß+ at 1.56% of all ß-thalassemic alleles, and a distinct hematological phenotype of the heterozygotes characterized by microcytic, hypochromic anemia with normal levels of HbA2 (Hemoglobin A2) and elevated HbF (Hemoglobin F) levels. The application of a specific methodology for the identification of the Corfu δ0ß+ allele is important for precise prenatal and antenatal diagnosis programs in Greece.

9.
Curr Genomics ; 23(5): 337-352, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36778192

RESUMO

Preimplantation Genetic Testing (PGT) aims to reduce the chance of an affected pregnancy or improve success in an assisted reproduction cycle. Since the first established pregnancies in 1990, methodological approaches have greatly evolved, combined with significant advances in the embryological laboratory. The application of preimplantation testing has expanded, while the accuracy and reliability of monogenic and chromosomal analysis have improved. The procedure traditionally employs an invasive approach to assess the nucleic acid content of embryos. All biopsy procedures require high technical skill, and costly equipment, and may impact both the accuracy of genetic testing and embryo viability. To overcome these limitations, many researchers have focused on the analysis of cell-free DNA (cfDNA) at the preimplantation stage, sampled either from the blastocoel or embryo culture media, to determine the genetic status of the embryo non-invasively. Studies have assessed the origin of cfDNA and its application in non-invasive testing for monogenic disease and chromosomal aneuploidies. Herein, we discuss the state-of-the-art for modern non-invasive embryonic genetic material assessment in the context of PGT. The results are difficult to integrate due to numerous methodological differences between the studies, while further work is required to assess the suitability of cfDNA analysis for clinical application.

10.
HLA ; 98(2): 93-113, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102036

RESUMO

The major histocompatibility complex (MHC) contains many genes that play key roles in initiating and regulating immune responses. This includes the polymorphic MHCI and MHCII genes that present epitopes to CD8+ and CD4+ T-cells, respectively. Consequently, the characterisation of the repertoire of MHC genes is an important component of improving our understanding of the genetic variation that determines the outcomes of immune responses. In cattle, MHC (BoLA) research has predominantly focused on Holstein-Friesian animals (as the most economically important breed globally), although the development of high-throughput approaches has allowed the BoLA-DRB3 repertoire to be studied in a greater variety of breeds. In a previous study we reported on the development of a MiSeq-based method to enable high-throughput and high-resolution analysis of bovine MHCI repertoires. Herein, we report on the expansion of this methodology to incorporate analysis of the BoLA-DRB3 and its application to analyse MHC diversity in a large cohort of cattle from Brazil (>500 animals), including representatives from the three major Bos indicus breeds present in Brazil - Guzerat, Gir and Nelore. This large-scale description of paired MHCI-DRB3 repertoires in Bos indicus cattle has identified a small number of novel DRB3 alleles, a large number of novel MHCI alleles and haplotypes, and provided novel insights into MHCI-MHCII association - further expanding our knowledge of bovine MHC diversity.


Assuntos
Variação Genética , Antígenos de Histocompatibilidade Classe II , Alelos , Animais , Brasil , Bovinos , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética
11.
Front Immunol ; 12: 627173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777010

RESUMO

Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells that utilize a semi-invariant T cell receptor (TCR) α chain and are restricted by the highly conserved antigen presenting molecule MR1. MR1 presents microbial riboflavin biosynthesis derived metabolites produced by bacteria and fungi. Consistent with their ability to sense ligands derived from bacterial sources, MAIT cells have been associated with the immune response to a variety of bacterial infections, such as Mycobacterium spp., Salmonella spp. and Escherichia coli. To date, MAIT cells have been studied in humans, non-human primates and mice. However, they have only been putatively identified in cattle by PCR based methods; no phenotypic or functional analyses have been performed. Here, we identified a MAIT cell population in cattle utilizing MR1 tetramers and high-throughput TCR sequencing. Phenotypic analysis of cattle MAIT cells revealed features highly analogous to those of MAIT cells in humans and mice, including expression of an orthologous TRAV1-TRAJ33 TCR α chain, an effector memory phenotype irrespective of tissue localization, and expression of the transcription factors PLZF and EOMES. We determined the frequency of MAIT cells in peripheral blood and multiple tissues, finding that cattle MAIT cells are enriched in mucosal tissues as well as in the mesenteric lymph node. Cattle MAIT cells were responsive to stimulation by 5-OP-RU and riboflavin biosynthesis competent bacteria in vitro. Furthermore, MAIT cells in milk increased in frequency in cows with mastitis. Following challenge with virulent Mycobacterium bovis, a causative agent of bovine tuberculosis and a zoonosis, peripheral blood MAIT cells expressed higher levels of perforin. Thus, MAIT cells are implicated in the immune response to two major bacterial infections in cattle. These data suggest that MAIT cells are functionally highly conserved and that cattle are an excellent large animal model to study the role of MAIT cells in important zoonotic infections.


Assuntos
Infecções Bacterianas/imunologia , Bovinos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Animais , Citocinas/farmacologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/imunologia , Fenótipo , Ribitol/análogos & derivados , Ribitol/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia
12.
Front Immunol ; 11: 588180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281817

RESUMO

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosisin vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted.


Assuntos
Antígenos de Bactérias/imunologia , Vacina BCG/administração & dosagem , Lipopeptídeos/imunologia , Mycobacterium bovis/imunologia , Linfócitos T/imunologia , Vacinas de Subunidades/administração & dosagem , Animais , Anticorpos Antibacterianos/imunologia , Bovinos/imunologia , Citocinas/imunologia , Interações Hidrofóbicas e Hidrofílicas , Imunização , Masculino
14.
Vet Res ; 50(1): 99, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31771636

RESUMO

Salmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity.


Assuntos
Doenças dos Bovinos/fisiopatologia , Salmonelose Animal/fisiopatologia , Salmonella enterica/fisiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Antígenos de Histocompatibilidade Classe II/análise , Salmonelose Animal/microbiologia , Sorogrupo
16.
BMC Genomics ; 20(1): 20, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621582

RESUMO

BACKGROUND: Salmonella enterica subspecies enterica is an animal and zoonotic pathogen of global importance. Cattle are a significant reservoir of human non-typhoidal salmonellosis and can suffer enteric and systemic disease owing to the ability of Salmonella to survive within the bovine lymphatic system and intestines. Contamination of food can occur due to the incorporation of contaminated peripheral lymph nodes or by direct contamination of carcasses with gut contents. It is essential to understand the mechanisms used by Salmonella to enter and persist within the bovine lymphatic system and how they differ from those required for intestinal colonization to minimize zoonotic infections. RESULTS: Transposon-directed insertion site sequencing (TraDIS) was applied to pools of mutants recovered from mesenteric lymph nodes (MLNs) draining the distal ileum of calves after oral inoculation with a library of 8550 random S. Typhimurium mini-Tn5Km2 mutants in pools of 475 mutants per calf. A total of 8315 mutants representing 2852 different genes were detected in MLNs and their in vivo fitness was calculated. Using the same improved algorithm for analysis of transposon-flanking sequences, the identity and phenotype of mutants recovered from the distal ileal mucosa of the same calves was also defined, enabling comparison with previously published data and of mutant phenotypes across the tissues. Phenotypes observed for the majority of mutants were highly significantly correlated in the two tissues. However, 32 genes were identified in which transposon insertions consistently resulted in differential fitness in the ileal wall and MLNs, suggesting niche-specific roles for these genes in pathogenesis. Defined null mutations affecting ptsN and spvC were confirmed to result in tissue-specific phenotypes in calves, thus validating the TraDIS dataset. CONCLUSIONS: This validation of the role of thousands of Salmonella genes and identification of genes with niche-specific roles in a key target species will inform the design of control strategies for bovine salmonellosis and zoonotic infections, for which efficacious and cross-protective vaccines are currently lacking.


Assuntos
Elementos de DNA Transponíveis/genética , Infecções por Salmonella/genética , Salmonella enterica/genética , Salmonella typhimurium/genética , Animais , Carbono-Oxigênio Liases/genética , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Reservatórios de Doenças/microbiologia , Humanos , Íleo/microbiologia , Intestinos/microbiologia , Linfonodos/microbiologia , Mutação , Infecções por Salmonella/microbiologia , Infecções por Salmonella/transmissão , Salmonella enterica/patogenicidade , Salmonella typhimurium/patogenicidade
17.
Methods Mol Biol ; 1885: 207-219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30506200

RESUMO

The inherited disorders of hemoglobin synthesis constitute the most common monogenic diseases worldwide. The clinical severity of ß-thalassemia major and the sickle cell syndromes targets them as priority genetic diseases for prevention programs, which incorporates population screening to identify heterozygotes, with the option of prenatal diagnosis for carrier couples. Rapid genotype characterization is fundamental in the diagnostic laboratory, especially when offering prenatal diagnosis. The application of real-time PCR provides a means for rapid and potentially high throughput assays, without compromising accuracy. It has several advantages over end-point PCR analysis, including the elimination of post-PCR processing steps and a wide dynamic range of detection with a high degree of sensitivity. Although there are over 200 mutations associated with the ß-thalassemia and sickle cell syndromes, the relatively small size of the ß-, HBB gene (less than 2000 base-pairs) and the close proximity of most mutations facilitates the design of a minimal number of real-time PCR assays using the LightCycler™ system, which are capable of detecting the majority of most common ß-gene mutations world-wide. These assays are highly appropriate for rapid genotyping of parental and fetal DNA samples with respect to ß-thalassemia and sickle cell syndromes.


Assuntos
Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Testes Genéticos , Diagnóstico Pré-Natal , Talassemia beta/diagnóstico , Talassemia beta/genética , Líquido Amniótico/citologia , Amostra da Vilosidade Coriônica , Análise Mutacional de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Mutação , Diagnóstico Pré-Natal/métodos , Reação em Cadeia da Polimerase em Tempo Real , Globinas beta/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-30250750

RESUMO

PURPOSE: The purpose of this review is to examine the role of eplerenone in the treatment of central serous chorioretinopathy (CSCR). METHODS: A comprehensive search of the PubMed database has been conducted regarding eplerenone for CSCR, while studies using spironolactone were excluded. Articles and book chapters cited in the reference lists of articles obtained by this method were reviewed and included when considered appropriate, while the retrieved articles were filtered manually to exclude duplicates. RESULTS: Oral eplerenone at a dose of 25-50 mg/day has been found to be effective and well-tolerated for the treatment of chronic CSCR. The published studies have shown significant improvement in visual acuity and decrease or total absorption of subretinal fluid in patients with CSCR treated with oral eplerenone. However, it should be noted that the majority of studies were retrospective with limited number of patients and short follow-up. On the other hand, patients presenting widespread retinal pigment epithelium changes are less likely to benefit from eplerenone treatment, which may argue for an earlier intervention. CONCLUSIONS: CSCR is a challenging disease to understand and treat, since its pathogenesis remains elusive and multifactorial. Pharmacologic approaches, like eplerenone, are intriguing, as they target several pathophysiological pathways and may lead to visual acuity improvement and more rapid recovery.

19.
Immunogenetics ; 70(9): 585-597, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947943

RESUMO

Granzymes are a family of serine proteases found in the lytic granules of cytotoxic T lymphocytes and natural killer (NK) cells, which are involved in killing of susceptible target cells. Most information on granzymes and their enzymatic specificities derive from studies in humans and mice. Although granzymes shared by both species show a high level of conservation, the complement of granzyme genes differs between the species. The aim of this study was to identify granzyme genes expressed in cattle, determine their genomic locations and analyse their sequences to predict likely functional specificities. Orthologues of the five granzyme genes found in humans (A, B, H, K and M) were identified, as well a novel gene designated granzyme O, most closely related to granzyme A. An orthologue of granzyme O was found in pigs and a non-function version was detected in the human genome. Use of specific PCRs demonstrated that all of these genes, including granzyme O, are expressed in activated subsets of bovine lymphocytes, with particularly high levels in CD8 T cells. Consistent with findings in humans and mice, the granzyme-encoding genes were located on three distinct genomic loci, which correspond to different proteolytic enzymatic activities, namely trypsin-like, chymotrypsin-like and metase-like. Analysis of amino acid sequences indicated that the granzyme proteins have broadly similar enzymatic specificities to their human and murine counterparts but indicated that granzyme B has a different secondary specificity. These findings provide the basis for further work to examine their role in the cytotoxic activity of bovine CD8 T cells.


Assuntos
Granzimas/genética , Linfócitos/enzimologia , Filogenia , Animais , Bovinos , Mapeamento Cromossômico , Granzimas/química , Granzimas/metabolismo , Ativação Linfocitária , Anotação de Sequência Molecular , Perforina/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripsina/genética
20.
Am J Hum Genet ; 101(3): 326-339, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844486

RESUMO

During pregnancy, cell-free DNA (cfDNA) in maternal blood encompasses a small percentage of cell-free fetal DNA (cffDNA), an easily accessible source for determination of fetal disease status in risk families through non-invasive procedures. In case of monogenic heritable disease, background maternal cfDNA prohibits direct observation of the maternally inherited allele. Non-invasive prenatal diagnostics (NIPD) of monogenic diseases therefore relies on parental haplotyping and statistical assessment of inherited alleles from cffDNA, techniques currently unavailable for routine clinical practice. Here, we present monogenic NIPD (MG-NIPD), which requires a blood sample from both parents, for targeted locus amplification (TLA)-based phasing of heterozygous variants selectively at a gene of interest. Capture probes-based targeted sequencing of cfDNA from the pregnant mother and a tailored statistical analysis enables predicting fetal gene inheritance. MG-NIPD was validated for 18 pregnancies, focusing on CFTR, CYP21A2, and HBB. In all cases we could predict the inherited alleles with >98% confidence, even at relatively early stages (8 weeks) of pregnancy. This prediction and the accuracy of parental haplotyping was confirmed by sequencing of fetal material obtained by parallel invasive procedures. MG-NIPD is a robust method that requires standard instrumentation and can be implemented in any clinic to provide families carrying a severe monogenic disease with a prenatal diagnostic test based on a simple blood draw.


Assuntos
Hiperplasia Suprarrenal Congênita/diagnóstico , Biomarcadores/sangue , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal/métodos , Esteroide 21-Hidroxilase/genética , Hiperplasia Suprarrenal Congênita/sangue , Hiperplasia Suprarrenal Congênita/genética , Células Cultivadas , Fibrose Cística/sangue , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/sangue , DNA/sangue , DNA/genética , Feminino , Haplótipos , Humanos , Gravidez , Esteroide 21-Hidroxilase/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...